

1. Quadratic Equation

Lecture - 1

Q.1 If roots of the equation $(a - b)x^2 + (c - a)x + (b - c) = 0$ are equal, then a, b, c are in -(A) A.P. (B) H.P. (C) G.P. (D) None of these

[A] Sol. **Proper Method**

Given

 $(a - b)x^{2} + (c - a)x + (b - c) = 0$ Roots are equal $\therefore D = 0$ $(c-a)^2 - 4(a-b)(b-c) = 0$ $\Rightarrow c^2 + a^2 - 2ac - 4(ab - ac - b^2 + bc) = 0$ $\Rightarrow c^2 + a^2 + 4b^2 + 2ac - 4ab - 4bc = 0$ \Rightarrow (c + a - 2b)² = 0 \Rightarrow c + a - 2b = 0 $\Rightarrow 2b = a + c$ \therefore a, b, c are in A.P.

Short Trick

a - b + c - a + b - c = 0 $\therefore a - b = b - c$ $\Rightarrow 2b = a + c$ So a, b, c, are in A.P.

Q.2 If the roots of the equation $a(b-c) x^2 + b(c-a) x + c(a-b) = 0$ are equal, then a, b, c are in -(A) HP (B) GP (C) AP (D) None of these

	(A) HP	(B) GP	(C) AP	(D) None of these	
•	[A]				
	Proper Method	-		Short Trick	
	Given :			a(b-c) + b(c-a) + c(a-b) = 0	
	$a (b - c) x^{2} + b (c - a) x^{2}$	$\mathbf{x} + \mathbf{c} \ (\mathbf{a} - \mathbf{b}) = 0$		$\therefore a(b-c) = c(a-b)$	
	Roots are equal			2ac	

 \Rightarrow b = $\frac{2ac}{dc}$

So, a, b, c are in H.P.

Sol.

 $\therefore D = 0$

 \Rightarrow b = $\frac{2ac}{dc}$

 $\Rightarrow b^2(c-a)^2 - 4a(b-c)c(a-b) = 0$

 $\Rightarrow (bc + ba - 2ac)^2 = 0$ $\Rightarrow bc + ba - 2ac = 0$

a + c

 \therefore a, b, c are in H.P.

 $\Rightarrow b^2(c^2 + a^2 - 2ac) - 4ac(ba - b^2 - ca + bc) = 0$

 $\Rightarrow b^2c^2 + b^2a^2 + 4a^2c^2 + 2acb^2 - 4a^2bc - 4abc^2 = 0$

 $\Rightarrow b^{2}c^{2} + b^{2}a^{2} - b^{2} 2ac - 4a^{2} bc + 4acb^{2} + 4a^{2}c^{2} - 4abc^{2} = 0$

Q.3 If a, b, c are distinct positive real numbers such that b(a + c) = 2ac, then the roots of $ax^2 + 2bx + c = 0$ are:

(A) Real and equal (B) Real and distinct (C) Imaginary (D) None of these

[C]		
Proper Method	Short Trick	
$D = 4b^{2} - 4ac = 4\left\{\frac{4a^{2}c^{2}}{(a+c)^{2}} - ac\right\}$ $= \frac{16ac}{(a+c)^{2}}\left\{4ac - (a+c)^{2}\right\}$ $= -\frac{16ac}{(a+c)^{2}}\left(a-c\right)^{2} < 0 \ [\because a, c > 0]$ $\Rightarrow \text{ roots are imaginary}$	$b = \frac{2ac}{a+c} \Rightarrow a, b, c$ are in H.P. let a = 2, b = 3, c = 6 now equation $2x^{2} + 6x + 6 = 0$ D = 36 - 48 < 0 (imaginary roots)	
\Rightarrow roots are imaginary		

Q.4 If a, b, c, \in R and 1 is a root of the equation $ax^2 + bx + c = 0$, then the equation $4ax^2 + 3bx + 2c = 0$, $c \neq 0$ has roots which are :

(A) Real and equal (B) Real and distinct (C) Imaginary (D) Rational

[B] Proper Method 1 is a root of $ax^2 + bx + c = 0 \Rightarrow a + b + c = 0$ D of $4ax^2 + 3bx + 2c = 0$ is $= 9b^2 - 32ac = 9(a + c)^2 - 32ac$ $= c^2 \left\{ 9\left(\frac{a}{c}\right)^2 - 14\left(\frac{a}{c}\right) + 9 \right\}$ $= c^2 \left\{ 9\left(\frac{a}{c}\right)^2 - 14\left(\frac{a}{c}\right) + 9 - \frac{49}{9} \right\} > 0$ $c^2 \left\{ 3\left(\frac{a}{c} - \frac{7}{3}\right)^2 + \frac{31}{9} \right\} > 0$ \Rightarrow roots are real and distinct.

Short Trick Let the roots are 1 and 2 then equation $ax^2 + bx + c = 0$ becomes $x^2 - 3x + 2 = 0$ (a = 1, b = -3, c = 2) Now equation $4ax^2 + 3bx + 2c = 0$ $\Rightarrow 4x^2 - 9x + 4 = 0$ D = 81 - 64 > 0 (real and distinct)

Q.5 If α and β are the roots of the equation $x^2 - p(x + 1) - q = 0$, then the value of $\frac{\alpha^2 + 2\alpha + 1}{\alpha^2 + 2\alpha + q} + \frac{\beta^2 + 2\beta + 1}{\beta^2 + 2\beta + q}$ is: (A) 2 (B) 1 (C) 0 (D) None

[B]			
Proper Method	Short Trick		
Equation is $x^2 - px - (p + q) = 0$	Let $\alpha = 1$ and $\beta = 2$, then equation is		
$\alpha + \beta = p, \ \alpha\beta = -(p+q)$	$x^2 - 3x + 2 = 0$		
Now $(\alpha + 1) (\beta + 1) = \alpha\beta + (\alpha + \beta) + 1$	so $p = 3$ and $-p - q = 2$		
= -(p + q) + p + 1 = 1 - q	\Rightarrow q = -5		
The given expression	$\alpha^2 + 2\alpha + 1$ $\beta^2 + 2\beta + 1$		
$= \frac{(\alpha+1)^2}{(\alpha+1)^2 + (q-1)} + \frac{(\beta+1)^2}{(\beta+1)^2 + (q-1)}$	$\frac{\alpha^2 + 2\alpha + 1}{\alpha^2 + 2\alpha + q} + \frac{\beta^2 + 2\beta + 1}{\beta^2 + 2\beta + q}$		
$(\alpha + 1)^2 + (q - 1)$ $(\beta + 1)^2 + (q - 1)$	$=\frac{4}{-2}+\frac{9}{3}=1$		
$= \frac{[2(\alpha+1)^{2}(\beta+1)^{2} + (q-1)\{(\alpha+1)^{2} + (\beta+1)^{2}\}]}{[\alpha+1)^{2}(\beta+1)^{2}(\beta+1)^{2}(\beta+1)^{2}]}$	-2 3 -1		
$[(\alpha + 1)^{2}(\beta + 1)^{2} + (q - 1)\{(\alpha + 1)^{2} + (\beta + 1)^{2}\} + (q - 1)^{2}]$			
$= \frac{2(1-q)^2 + (q-1)[(\alpha+1)^2 + (\beta+1)^2]}{2(1-q)^2 + (q-1)[(\alpha+1)^2 + (\beta+1)^2]} = 1$			
$2(1-q)^{2} + (q-1)[(\alpha+1)^{2} + (\beta+1)^{2}]$			

Q.6 If tan A and tan B are the roots of $x^2 + ax + b = 0$, then the value of expression $sin^2(A + B) + a sin(A + B) cos(A + B) + b cos^2(A + B)$ is equal to -

(A)
$$\frac{a}{b}$$
 (B) $\frac{b}{a}$ (C) a (D) b

[D]	
Proper Method	Short Trick
$\tan A + \tan B = -a$ and $\tan A$. $\tan B = b$	I = 1 D = 000 m 1 D = 000 1 D = 000 1 1 1 D = 000 1 1 1 D = 000 1
$\Rightarrow \tan (A + B) = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B} = \frac{-a}{1 - b} = \frac{a}{b - 1}$	Let A = 30° and B = 60°, then roots are $\frac{1}{\sqrt{3}}$, $\sqrt{3}$
$\Rightarrow \sin(A + B) = \frac{a}{\sqrt{a^2 + (b - 1)^2}}$	and equation is $x^2 - \frac{4}{\sqrt{3}}x + 1 = 0$
$\sqrt{a^2 + (b-1)^2}$	so, $a = -\frac{4}{\sqrt{3}}$ and $b = 1$
and $\cos(A + B) = \frac{b-1}{\sqrt{a^2 + (b-1)^2}}$	$\int \sqrt{3} \sqrt{3}$ now sin ² (A + B) + a sin(A + B) cos(A + B) +
$sin^{2}(A + B) + a sin (A + B) cos(A + B) + b cos^{2} (A + B)$	$b \cos^2 (A + B) = 1 + 0 + 0 = 1 = b$
$= \frac{a^2}{a^2 + (b-1)^2} + \frac{a^2(b-1)}{a^2 + (b-1)^2} + \frac{b(b-1)^2}{a^2 + (b-1)^2}$	
$=\frac{a^2 + a^2b - a^2 + b^3 - 2b^2 + b}{a^2 + (b-1)^2}$	· .
$= \frac{b(a^2 + b^2 - 2b + 1)}{(a^2 + b^2 - 2b + 1)}$	
= b	

Q.7 If α , β are the roots of the equation $ax^2 + bx + c = 0$ and $S_n = \alpha^n + \beta^n$, then a $S_{n+1} + c S_{n-1} =$ (A) bS_n (B) b^2S_n (C) $2bS_n$ (D) $-bS_n$

[D]				
Proper Method	Short Trick			
Here α , β are roots	Let $\alpha = 1$, $\beta = 2$, then the equation			
$\therefore \qquad a\alpha^2 + b\alpha + c = 0 \qquad \dots (1)$	$x^2 - 3x + 2 = 0$			
$a\beta^2 + b\beta + c = 0 \qquad \dots (2)$	so, $a = 1, b = -3, c = 2$			
Now let us consider (Keeping results (1), (2) in mind) a $S_{n+1} + b S_n + c S_{n-1}$ = $a[\alpha^{n+1}+\beta^{n+1}] + b [\alpha^n+\beta^n] + c [\alpha^{n-1}+\beta^{n-1}]$ = $[a\alpha^{n+1}+b\alpha^n+c\alpha^{n-1}] + [a\beta^{n+1}+b\beta^n+c\beta^{n-1}]$ = $\alpha^{n-1} [a\alpha^2 + b\alpha + c] + \beta^{n-1} [a\beta^2 + b\beta + c]$	and let $n = 2 \Rightarrow S_2 = \alpha^2 + \beta^2 = 5$ now $aS_{n+1} + cS_{n-1}$ $= S_3 + 2S_1 = 9 + 6 = 15$ by option (D) $- bS_n = (+3)(5) = 15 \text{ is correct}$			
= 0 + 0 = 0 Hence $aS_{n+1} + cS_{n-1} = -bS_n$.				

